23 research outputs found

    Eggs in the Freezer: Energetic Consequences of Nest Site and Nest Design in Arctic Breeding Shorebirds

    Get PDF
    Birds construct nests for several reasons. For species that breed in the Arctic, the insulative properties of nests are very important. Incubation is costly there and due to an increasing surface to volume ratio, more so in smaller species. Small species are therefore more likely to place their nests in thermally favourable microhabitats and/or to invest more in nest insulation than large species. To test this hypothesis, we examined characteristics of nests of six Arctic breeding shorebird species. All species chose thermally favourable nesting sites in a higher proportion than expected on the basis of habitat availability. Site choice did not differ between species. Depth to frozen ground, measured near the nests, decreased in the course of the season at similar non-species-specific speeds, but this depth increased with species size. Nest cup depth and nest scrape depth (nest cup without the lining) were unrelated to body mass (we applied an exponent of 0.73, to account for metabolic activity of the differently sized species). Cup depth divided by diameter2 was used as a measure of nest cup shape. Small species had narrow and deep nests, while large species had wide shallow nests. The thickness of nest lining varied between 0.1 cm and 7.6 cm, and decreased significantly with body mass. We reconstruct the combined effect of different nest properties on the egg cooling coefficient using previously published quantitative relationships. The predicted effect of nest cup depth and lining depth on heat loss to the frozen ground did not correlate with body mass, but the sheltering effect of nest cup diameter against wind and the effects of lining material on the cooling coefficient increased with body mass. Our results suggest that small arctic shorebirds invest more in the insulation of their nests than large species

    Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments

    Get PDF
    Several immune-related markers have been implicated in basal cell carcinoma (BCC) pathogenesis. The BCC inflammatory infiltrate is dominated by Th2 cytokines, suggesting a specific state of immunosuppression. In contrast, regressing BCC are characterized by a Th1 immune response with IFN-ĂŽÂł promoting a tumor suppressive activity. IL-23/Th17-related cytokines, as interleukin (IL)-17, IL-23 and IL-22, play a significant role in cutaneous inflammatory diseases, but their involvement in skin carcinogenesis is controversial and is poorly investigated in BCC. In this study we investigated the expression of IFN-ĂŽÂł, IL-17, IL-23 and IL-22 cytokines in BCC at the protein and mRNA level and their modulation during imiquimod (IMQ) treatment or photodynamic therapy (PDT). IFN-ĂŽÂł, IL-17, IL-23 and IL-22 levels were evaluated by immunohistochemistry and quantitative Real Time PCR in 41 histopatho-logically-proven BCCs (28 superficial and 13 nodular) from 39 patients. All BCC samples were analyzed at baseline and 19 of 41 also during medical treatment (9 with IMQ 5% cream and 10 with MAL-PDT). Association between cytokines expression and clinico-pathological variables was evaluated. Higher levels of IFN-ĂŽÂł, IL-17, IL-23 and IL-22 were found in BCCs, mainly in the peritumoral infiltrate, compared to normal skin, with the expression being correlated to the severity of the inflammatory infiltrate. IFN-ĂŽÂł production was higher in superficial BCCs compared to nodular BCCs, while IL-17 was increased in nodular BCCs. A significant correlation was found between IFN-ĂŽÂł and IL-17 expression with both cytokines expressed by CD4+ and CD8+ T-cells. An increase of all cytokines occurred during the inflammatory phase induced by IMQ and at the early time point of PDT treatment, with significant evidence for IFN-ĂŽÂł, IL-23, and IL-22. Our results confirm the role of IFN-ĂŽÂł and support the involvement of IL-23/Th17-related cytokines in BCC pathogenesis and in the inflammatory response during IMQ and MAL-PDT treatments

    The effect of electrolyte on the encapsulation efficiency of vesicles formed by the nonionic surfactant, 2C18E12

    No full text
    Encapsulation efficiencies of vesicles formed by the nonionic surfactant 1,2-dioctadecyl-rac-glycerol-3-omega-methoxydodecylethylene glycol (abbreviated as 2C(18)E(12)) and its phospholipid counterpart, distearoylphosphatidylcholine (DSPC) at 298 K, were determined by the entrapment of the water-soluble dye, carboxyfluorescein (CF) to be 0.045 +/- 0.001 and 0.03 +/- 0.04 Lmol(-1) for 2C(18)E(12) vesicles prepared using low osmolarity (270 m Osm) Krebs-Henseleit (K-H) buffer and a modified 'high salt' (1600 m Osm) variant of K-H buffer, respectively, and 0.64 +/- 0.01 and 0.31 +/- 0.04 L mol(-1) for DSPC vesicles prepared under the same conditions and in the same buffers. Freeze fracture electron microscopy studies confirmed the presence of vesicles when 2C(18)E(12) and DSPC were dispersed in water and both buffer solutions. Small angle neutron scattering (SANS) studies, using D2O in place of H2O, showed that when 2C(18)E(12) vesicles were prepared in the 'high salt' variant of K-H buffer as opposed to K-H buffer or water, a higher proportion of multilamellar vesicles (MLV) were formed. Furthermore when prepared in the 'high salt' variant of K-H buffer, the 2C(18)E(12) bilayers were thinner, and when present in the form of MLV exhibited a smaller layer of water separating the bilayers. However, even in the absence of electrolyte, 2C18E12 formed surprisingly thin bilayers due to the penetration of the polyoxyethylene chains into the hydrophobic chain region of the bilayer. Due to the dehydrating effect of the high concentration of electrolyte present in the 'high salt' variant of K-H, the polyoxyethylene head groups penetrated further into the hydrophobic region of the bilayer making the bilayer even thinner. In the case of the DSPC vesicles, although the SANS study showed an increase in the relative proportion of multilamellar to unilamellar vesicles when samples were prepared in the 'high salt' variant of K-H buffer, no differences were observed in the thickness and the d-spacing of the vesicle bilayers. Variable temperature turbidity measurements of 2C(18)E(12), and DSPC vesicles prepared in water indicated phase changes at 320 +/- 0.5 and 327 +/- 0.5 K, respectively, and were unchanged when the 'high salt' variant of K-H buffer was used as hydrating medium. Taken together, these results suggest that a low phase transition temperature was not the reason for the poor entrapment efficiency of 2C(18)E(12) vesicles but rather the very 'thin' hydrophobic barrier formed by the penetration of the polyoxyethylene chains into the hydrophobic region of the bilayer
    corecore